Diabetes mellitus and expression of the enterocyte renin-angiotensin system: implications for control of glucose transport across the brush border membrane.
نویسندگان
چکیده
Streptozotocin-induced (Type 1) diabetes mellitus (T1DM) in rats promotes jejunal glucose transport, but the trigger for this response remains unclear. Our recent work using euglycemic rats has implicated the enterocyte renin-angiotensin system (RAS) in control of sodium-dependent glucose transporter (SGLT1)-mediated glucose uptake across the jejunal brush border membrane (BBM). The aim of the present study was to examine whether expression of enterocyte RAS components is influenced by T1DM. The effects of mucosal addition of angiotensin II (AII) on [(14)C]-D-glucose uptake by everted diabetic jejunum was also determined. Two-week diabetes caused a fivefold increase in blood glucose level and reduced mRNA and protein expression of AII type 1 (AT(1)) and AT(2) receptors and angiotensin-converting enzyme in isolated jejunal enterocytes. Angiotensinogen expression was, however, stimulated by diabetes while renin was not detected in either control or diabetic enterocytes. Diabetes stimulated glucose uptake into everted jejunum by 58% and increased the BBM expression of SGLT1 and facilitated glucose transporter 2 (GLUT2) proteins, determined by Western blotting by 25% and 135%, respectively. Immunohistochemistry confirmed an enhanced BBM expression of GLUT2 in diabetes and also showed that this was due to translocation of the transporter from the basolateral membrane to BBM. AII (5 microM) or L-162313 (1 microM), a nonpeptide AII analog, decreased glucose uptake by 18% and 24%, respectively, in diabetic jejunum. This inhibitory action was fully accountable by an action on SGLT1-mediated transport and was abolished by the AT(1) receptor antagonist losartan (1 microM). The decreased inhibitory action of AII on in vitro jejunal glucose uptake in diabetes compared with that noted previously in jejunum from normal animals is likely to be due to reduced RAS expression in diabetic enterocytes, together with a disproportionate increase in GLUT2, compared with SGLT1 expression at the BBM.
منابع مشابه
Angiotensin receptor blocker telmisartan suppresses renal gluconeogenesis during starvation
The kidney plays an important role in gluconeogenesis during starvation. To clarify the anti-diabetic action of angiotensin receptor blockers, we examined the effects of telmisartan on the sodium-glucose co-transporters (SGLT) and the pathways of renal gluconeogenesis in streptozotocin-induced diabetes mellitus (DM) rats. At 4 weeks, the DM rats treated with/without telmisartan for 2 weeks and ...
متن کاملRole of actin in EGF-induced alterations in enterocyte SGLT1 expression.
Na+-glucose cotransporter (SGLT1) expression and the role of actin in epidermal growth factor (EGF)-induced alterations in glucose transport and brush-border surface area were examined in New Zealand White rabbit jejunal loops. In separate experiments, EGF or EGF concurrent with cytochalasin D, an inhibitor of actin polymerization, was administered to the experimental loop and compared with its...
متن کاملDoes apical membrane GLUT2 have a role in intestinal glucose uptake?
It has been proposed that the non-saturable component of intestinal glucose absorption, apparent following prolonged exposure to high intraluminal glucose concentrations, is mediated via the low affinity glucose and fructose transporter, GLUT2, upregulated within the small intestinal apical border. The evidence that the non-saturable transport component is mediated via an apical membrane sugar ...
متن کاملRegulation of MonosacchaRide tRanspoRt
An additional monosaccharide transport pathway stems from the interesting findings that GLUT2, the classic facilitative glucose transporter initially believed to be sequestered to the basolateral membrane, as well as a novel facilitative glucose-specific transporter GLUT7 (SLC2A7), can both be inserted into the brush border in response to high glucose loads in the lumen of the small intestine.1...
متن کاملMetformin-induced regulation of the intestinal D-glucose transporters.
Metformin is an orally administered drug that lowers blood glucose and improves insulin sensitivity in patients with non insulin-dependent diabetes. Although the antihyperglycemic effect of metformin has been extensively studied, its cellular mechanism(s) of action (including the effect on enterocyte) remains to be defined. This study was designed to examine the effect of metformin on glucose t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 297 3 شماره
صفحات -
تاریخ انتشار 2009